

Journal of Membrane Science & Research

journal homepage: www.msrjournal.com

Supplementary Information

Experimental, Modeling and AspenPlus Simulation of Different Configurations of Membrane Separation Systems for Highly Loaded CO_2 Selective Pebax 1657-ZIF-8 Membrane

Abolfazl Jomekian ^{1,*}, Reza Mosayebi Behbahani ²

¹ Esfarayen University of Technology, Esfarayen, North Khorasan, Iran

² Chemical Engineering Department, Ahvaz Faculty of Petroleum Engineering, Petroleum University of Technology (PUT), Ahvaz, Iran

Fig. S1. Schematic diagram and image of applied gas permeation set-up with an embedded image of utilized membrane modules.

Fig. S2. The simulated effect of module number on CO_2 and CH_4 permeate flow rates in a) SiS, b) SiSRP, c) DoSRP and d) DoSRR membrane system configurations for all synthesized MMMs.

Variables type	Variable Name	Default Value		
Real	Module Area	0.0125 m ²		
	Selectivity	Depends on MMM		
	Effective Thickness	0.00001 m		
	Delta P	1,900,000 Pa		
	CH ₄ feed composition	0.9		
	Temperature	298.15 K		
Integer	Module Number	1,000,000		

Table S1

Types, names and values of variables defined in Aspen Plus membrane model.

Table S2

¹³C NMR chemical shifts referenced to tetramethylsilane for all different investigated samples.

Sample	Chemical shifts (ppm)								
Pebax 1657	174.26	171.11	72.35	62.12	47.14	36.41	30.03	27.56	19.08
DBMF	145.29	122.43	47.37	30.31	19.89	14.05			
ZIF-8	145.12	122.20	14.3						
UZ/Dby 10	174.26	171.14	145.12	122.21	72.33	62.10	47.12	36.51	30.00
UZ/F0X-10	27.52	19.15	14.32						
Dha	174.20	171.14	14.33	125.20	122.50	72.37	62.82	47.43	47.14
rux	36.54	30.31	30.05	27.55	23.71	20.13	19.92	14.12	
	174.23	171.18	145.36	145.17	125.23	122.53	122.21	72.32	62.81
Z/Pbx-10	47.48	47.17	36.56	30.34	30.01	27.52	23.63	20.12	19.92
	14.32	12.51							

Table S3

CO2 and CH4 permeances (GPU) in different MMMs at different temperatures.

Temperature (K)	Z/Pbx-10		Z/Pbx-20		Z/Pbx-30		Z/Pbx-40		Z/Pbx-50		Z/Pbx-60	
	CO ₂	CH4	CO ₂	CH ₄	CO ₂	CH4	CO ₂	CH4	CO ₂	CH4	CO ₂	CH4
303	61.3	3.7	73	5.03	85	7.08	52.2	2.7	46.1	2.2	40.5	1.66
313	74	4.1	87	6	102	8.9	55	3.2	49	2.4	44	1.75
323	75	5.1	95	7.1	115	10.5	62	3.6	54	2.9	47	2.10

Table S4

Calculated CO2 and CH4 activation energy of permeation for synthesized MMMs.

MMM samples	$E_P(kJ/mol)$ for CO_2	$E_P(kJ/mol)$ for CH_4
Z/Pbx-10	8.27	13.12
Z/Pbx-20	10.75	14.02
Z/Pbx-30	12.32	16.05
Z/Pbx-40	6.97	11.72
Z/Pbx-50	6.42	11.19
Z/Pbx-60	5.99	9.50