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•	 FD method was used for species permeation mass transport through MMM 
•	 Fick’s second law of diffusion was solved to obtain the concentration profile
•	 Effective permeability of MMMs was calculated using the permeation flux 
•	 Effective permeability depends on the Pd /Pc and the volume fraction of particle
•	 Effective permeability depends on the type and parameters of the isotherm
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1. Introduction

Pervaporation process is a membrane-based separation technique which 
is widely used for the separation of alcohols from dilute aqueous solutions 
due to its advantages such as good separation performance and low energy 
consumption [1–5]. Membrane materials are commonly divided into two 
categories: polymeric membranes and inorganic membranes. Polymeric 
membranes are well-known due to their wide range of properties, ease of 
fabrication, high mechanical stability and low cost [6]. However, separation 
processes using polymeric membranes are restricted by the trade-off between 
membrane permeability (or permeate flux) and selectivity [7]. On the other 
hand, inorganic membranes have higher selectivity and permeability than 
the polymeric membranes, but they are more expensive and fragile. In 
order to overcome these barriers, it has been suggested to embed porous 
inorganic filler materials such as zeolites [8], metal organic frameworks 
(MOFs) [9], silicalites [10], carbon molecular sieves (CMS) [11,12], 

activated carbons (AC) [13] and carbon nanotubes (CNTs) [14] into the 
host polymer matrix to manufacture mixed matrix membranes (MMMs) or 
hybrid composite membranes. It has been reported that the presence of filler 
materials embedded within the polymer matrix could enhance the effective 
permeability of the membranes [8,10,15,16]. In addition, the presence of 
fillers might also improve the mechanical and thermal stability of membranes 
[13,17]. However, there are still important challenges (e.g. selecting the most 
appropriate pair of polymer-filler materials) which have to be overcome 
before applying these types of membranes at an industrial scale.

Modelling of mass transport is paramount to obtaining a better 
understanding about the influence of permeable and barrier fillers within the 
membrane, on the permeation of species through mixed matrix membranes. 
Different analytical and numerical solutions have been introduced to estimate 
the effective permeability of ideal mixed matrix membranes as a function of 
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Mixed matrix membranes (MMMs) are attracting significant interest for pervaporation and gas separation applications. To better comprehend the impact of filler particles within 
a polymer matrix, the species permeation mass transport was theoretically studied by numerical simulation using finite differences. The Fick’s second law of diffusion was solved 
for a three-dimensional MMM to obtain the concentration profile within the membrane and consequently the steady-state permeation flux of the species. The effective permeability 
of MMMs was then calculated using the steady-state permeation flux of the permeants. The effects of various structural parameters such as the filler volume fraction, particle size, 
shape and orientation, the ratio of permeability coefficients in the dispersed and continuous phases (Pd/Pc), membrane thickness and particle sorption isotherms were investigated. 
Results revealed that the effective permeability of MMMs strongly depends on the permeability ratio of the dispersed phase to the continuous phase and the volume fraction of the 
filler material. Moreover, the shape and size of the particles had no influence on the effective permeability of MMMs for filler volume fractions that are less than 0.4. For numerical 
simulations performed with different particle sorption isotherms, results showed that the effective permeability of the membrane depends on the type and parameters of the isotherm 
as well as the feed concentration.
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different parameters such as membrane thickness, filler size, volumetric filler 

loading and permeability of the components in the continuous and dispersed 

phases [7,18,19]. Recently, Ebneyamini et al. [20] proposed a semi-empirical 

resistance-based model to estimate the effective permeability of ideal MMMs. 

This model was developed by introducing a correction factor to a simple one-

directional resistance-based (RB) analytical solution to account for the three-

directional diffusional pathway. The correction factor was based on the ratio 

of the estimated effective permeability determined by a finite difference (FD) 

numerical solution and the simple RB model. The model was obtained under 

the assumptions of homogenous dispersion of cubical filler materials 

throughout the polymeric matrix and an ideal morphology at the polymer-

filler interface. In addition, it was assumed that the solubility of the permeants 

in both the continuous and dispersed phases followed a linear sorption 

isotherm (Henry’s law) which implied a fixed permeability of the penetrants 

in the two different phases within the membrane [20–23]. 

A three-directional (3D) numerical solution of the Fickian diffusion 

equations was used in this study to investigate the influence of the different 

parameters such as the filler content, the permeability ratio between the 

dispersed and the continuous phase (Pd/Pc), the filler shape (cubical, spherical, 

cylindrical), the size and orientation of the filler, the linear and non-linear 

sorption isotherms of species in the filler material and the membrane 

thickness on the effective permeability of ideal mixed matrix membranes with 

a homogenous and random dispersion of filler materials. To the best of our 

knowledge, this work is one of the first few investigations to simulate 

comprehensively the effect of filler properties on the relative permeability of 

mixed matrix membranes. 

 

 

2. Development of finite-difference numerical solution 

 

Finite difference numerical solution has been used to study the mass 

transfer of species through mixed matrix membranes. It was assumed that 

polymer-particle interface morphology was ideal. Moreover, it was assumed 

that the particle geometrical and intrinsic specifications of filler particles are 

identical throughout the membrane matrix. The overall membrane can be 

represented by a number of repeatable unit elements where each element 

contains a distribution of random or uniformly dispersed particles that is 

statistically identical to the distribution of particles of any other element of 

the membrane. For illustration purposes, a uniform distribution of cubical 

particles within the membrane is considered. Each element consists of a 

centrally-located cubical particle surrounded by the polymer matrix (Fig. 1). 

All membrane elements and their permeability are identical. The permeability 

of each unit is also identical to the entire membrane. Figure 1(a) represents a 

specific case of cubical elements (Figure 1(b)) of dimension 2 2 2 𝜇m3 

homogenously distributed within a 10 1010 𝜇m3 ideal mixed matrix 

membrane. The filler size and the solid volume fraction in Figure 1 are 1 𝜇m3 

and 0.125, respectively. 

To determine the steady and the unsteady state concentration profiles of 

the penetrants through the mixed matrix membrane, the three-dimensional 

Fick’s second law of diffusion (Eq. (1)) was solved by finite differences in 

Cartesian coordinates. 
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(1) 

In this investigation, it was assumed that the concentration of the feed 

solution, in contact with the retentate side of the membrane, remains constant 

and a perfect vacuum prevails on the permeate side. The unsteady state 

equation was solved to determine the time required to achieve steady state. 

However, for the majority of the results presented in this investigation such as 

to determine the effective permeability of mixed matrix membranes, the 

steady-state solution was required. It would therefore be possible to solve Eq. 

(1) with the time derivative term equal to zero. The finite differences code 

developed for this investigation had both the steady and the unsteady state 

options. However, it turned out that solving the very large sparse matrix for 

the steady state case took significantly more computation time than solving 

the unsteady state equation, while assuming a linear profile as the initial 

conditions. It is important to note that the final steady-state concentration 

profile and permeate flux are independent of initial conditions. For this 

reason, the unsteady state equation was used throughout this investigation. In 

addition, in the case where the solubility of permeants in the continuous and 

dispersed phases are nonlinear, solving for the unsteady state equation is 

required. The initial and boundary conditions considered in this investigation 

are given in Eq. (2). 
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For BC1, at the feed solution membrane interface, the surface 

concentration within the membrane is in equilibrium with the feed solution 

which was assumed constant over the entire membrane surface. For BC2, the 

concentration is equal to zero as perfect vacuum is assumed. For BC3-BC6, 

symmetry conditions (or periodic conditions) are assumed where the portion 

of the membrane that is solved using Eq. (1) is representative of all the other 

equal-size volumes forming the membrane. It will be shown in the results that 

the permeability of a representative element has the same permeability of the 

entire membrane. 

Eq. (1) was discretized using a sufficiently large number of mesh points 

and solved by finite differences. Eq. (3) determines the concentration of a 

permeant m at a mesh point (i, j, k) at time t + t as a function of the current 

concentration at mesh point (i, j, k) and the concentrations at the six 

neighbouring mesh points at time t. Eq. (1) prevails for all interior mesh 

points. This equation was solved iteratively to obtain the steady-state 

concentration profile and permeate flux of components.

 

 

 
 

Fig. 1. Schematic diagram of (a) 101010 𝜇m3 mixed matrix membrane containing 1 𝜇m cubical particle and (b) its repeatable element with a filler volume fraction of 0.125. 
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(3) 

 

The concentrations of all six neighboring mesh points in Eq. (3) were 

converted to their equilibrium concentrations relative to the phase of the 

central mesh point (i, j, k) using the ratio of the solubility coefficients in the 

two respective phases. For boundary mesh points, Eq. (3) was adapted to take 

into account boundary conditions of Eq. 2(b)-2(e). 

An effective diffusion coefficient between neighbouring mesh points was 

considered due to the different properties of the surrounding mesh points such 

as the diffusivity and solubility coefficients. A mass balance was performed 

to calculate the effective diffusivity coefficient of each mesh point within the 

matrix of the membrane. Eq. (4) was used to estimate the effective 

diffusivities in the x-direction between mesh point (i, j, k) and its left 

neighbour (i-1, j, k), and between mesh point (i, j, k) and its right neighbour 

(i+1, j, k), respectively. Similar equations have been used for the effective 

diffusion coefficients in y and z directions. 
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The Fick’s first law of diffusion (Eq. (5)) was used to estimate the 

average steady-state permeation flux of a permeant at the permeate side of the 

membrane based on all surface mesh points of the x-z plane. A similar 

equation was used for estimating the permeation flux at the feed side of the 

membrane. 

 

( ) , ,, ,y
x y zi N k

y L

C
J D

y
=


= −



 
(5a) 

( )

( )( )
, ,

1 1 1 1
=

= =

=
− −


x z

y

N N
i N k

y L

i k x y

J
J

N N

 
(5b) 

 

where J is the permeation flux calculated for a x-z plane. Nx, Ny and Nz are the 

number of mesh points used to discretize Eq. (1) in the x, y and z directions, 

respectively. Given the estimation of the permeation flux, the concentration 

driving force and the thickness, the effective steady-state permeability of a 

permeant in MMMs can be calculated (Eq. (6)). 
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To investigate the effect of embedded filler material on the effective 

permeability of the mixed matrix membrane, the finite difference algorithm 

was coded in FORTRAN and solved for different case studies. Moreover, in 

the case when the filler is an adsorbent for a given permeant, the impact of 

different adsorption isotherms of the filler material on the effective 

permeability of the MMMs was also studied. Both linear (Henry’s law) and 

nonlinear (Langmuir) equilibrium adsorption models were investigated. Table 

1 presents the values of the solubility and diffusion coefficients which were 

used in this study for the continuous and dispersed phases for various 

numerical simulations when sorption follows a linear isotherm (Henry’s law). 

 

 

3. Results and discussion 

 

3.1. Comparison between analytical and numerical solutions for neat 

polymeric membranes 

 

Since numerical solutions are used extensively in this investigation, it is 

important to validate the precision of the finite difference scheme with a 

benchmark analytical solution. An analytical solution does not exist for mixed 

matrix membranes. Therefore, the validation of the numerical solution will be 

done with the analytical solution for a pure polymeric membrane. The 

analytical solution was used to calculate the time-dependent concentration 

profile within the membrane and the time-dependent permeation fluxes at the 

two interfaces of the membrane. The analytical solution both for the 

concentration profile and the permeation flux can be found in Wu et al. [24]. 

Both the analytical and numerical solutions were obtained as a function 

of time for a neat membrane having a diffusion and solubility coefficients (D 

= 510-10 m2/s and S = 25 (g/L)/(g/L)), respectively. For the numerical 

solution, Eq. (3), subjected to boundary conditions of Eq. (2b-2e), was used to 

calculate the concentration profile of the permeants and the permeation flux at 

the two interfaces as a function of time. For this validation, the initial 

condition of the concentration within the membrane was set to be zero. The 

number of mesh points, (Nx, Ny, Nz), for this numerical solution, as well as for 

the majority of the numerical simulations was (41, 41, 41). 

Results of the validation for the time-dependent concentration profile and 

the permeation fluxes at the two interfaces are presented in Figures 2 and 3, 

respectively.  

Fig. 2 compares the numerical solution with the analytical solution for the 

concentration profile across the neat membrane at three different permeation 

times. Results clearly show that the numerical solution is very precise with an 

average error of 0.01% based on the three concentration profiles. 

Fig. 3 shows the time-dependent upstream and downstream permeation 

fluxes of a penetrant in a neat polymeric membrane which were calculated 

using both the analytical model and the numerical solution. Results clearly 

show that the calculated permeation flux with the numerical method is a very 

good estimation of the analytical permeation flux with an average error of 

0.05%. A much higher precision for the estimation of the steady-state 

permeation flux was obtained such that the numerical scheme developed in 

this investigation can be used with confidence for calculating the 

concentration profiles and the steady-state permeation flux of permeants in 

mixed matrix membranes. 

 

 
Table 1 

Values of solubility and diffusion coefficients used for various case studies for linear sorption 

isotherms. 
 

 
Material  D (m2/s) 

S 

(g/L)/(g/L) 
P (m2/h) Pd / Pc 

Case 1 
Continuous phase 5.0010-10 0.01 5.0010-12 

500 
Dispersed phase 1.0010-10 25.00 2.5010-09 

Case 2 
Continuous phase 5.0010-10 0.01 5.0010-12 

10.00 
Dispersed phase 2.0010-12 25.00 5.0010-11 

Case 3 
Continuous phase 5.0010-10 0.01 5.0010-12 

1.00 
Dispersed phase 5.0010-10 0.01 5.0010-12 

Case 4 
Continuous phase 5.0010-10 0.01 5.0010-12 

0.1 
Dispersed phase 2.0010-14 25.00 5.0010-13 
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Fig. 2. Concentration profile of the penetrant within a neat polymeric membrane as 

a function of the normalized length of the membrane at three different 

dimensionless times of the permeation process (Symbols: FD numerical solution; 

Lines: Analytical solution). 

 

 

 
 

Fig. 3. Upstream (blue) and downstream (red) dimensionless permeation fluxes as a 

function of the dimensionless time for a neat polymeric membrane (Symbols: FD 

numerical solution; Lines: Analytical solution). 

 

 

3.2. Concentration profile  

 

In order to investigate the impact of the presence of particles on the 

concentration profile of the penetrants through a mixed matrix membrane, 

different permeability ratios of the dispersed to the continuous phase were 

considered for a single spherical filler located at the centre of a cubical 

repeatable element, with a filler volume fraction of 0.065. Figure 4 presents 

the concentration profile, normalized by their solubility, through the centre of 

the cubical unit element as indicated in the insert in Figure 4. When the 

permeability of the dispersed and continuous phases are identical, the 

concentration profile is obviously linear throughout the membrane. When the 

permeability of the dispersed phase is larger than the permeability of the 

continuous phase, the solid particle acts as an attractor where the 

concentration streamlines will deviate slightly toward the solid particle since 

it offers an easier diffusion path. As a result, the overall permeation flux 

across the membrane will increase such that the slope of the concentration 

within the polymeric phase will increase to support this higher flux as 

observed for the concentration profile for Pd/Pc of 10. However, away from 

the path of the particle, the concentration profile will not be as steep as the 

one shown in the centre line of the cubical element. Since the permeability of 

the particle is higher, the concentration gradient within the particle is smaller 

and the total concentration profile under steady state will adjust such that the 

average permeation flux at all x-z planes will be identical across the 

membrane (y-direction). 

On the other hand, when the dispersed to the continuous permeability 

ratio is less than one, the particle acts as a barrier to the permeation of the 

penetrant and the concentration streamlines deviate away from the particle 

and the average permeation flux across the membrane becomes smaller. This 

is evidenced by the lower concentration gradient in the continuous phase 

above and below the particle in Figure 4. It is obvious that for mixed matrix 

membranes used for pervaporation and gas separation, a larger dispersed to 

continuous permeability ratio is required. 

 

 

 
 

Fig. 4. Effect of presence of fillers on the concentration profile of the penetrants 

through a mixed matrix membrane. Concentration profile is along the line passing 

though the poles of the spherical particle. 

 

 

3.3. Effect of the filler volume fraction () and permeability ratio (Pd/Pc) 

 

A series of numerical experiments were performed to determine the effect 

of the volumetric filler content of the dispersed phase in the polymer matrix 

of MMMs on the effective membrane permeability. Since the effective 

permeability of a homogenously dispersed mixed matrix membrane is 

identical to the permeability of its repeatable unit element [20], to reduce the 

computing time, the numerical solution was performed on the repeatable 

element instead of the whole MMM. In addition to the filler volume fraction, 

another very important parameter impacting on the relative permeability of 

mixed matrix membranes is the ratio of the permeability coefficient of the 

dispersed to the continuous phase (Pd /Pc). 

Figure 5 shows the variation of the relative effective permeability 

(Peff /Pc) as a function of the ratio of the permeability coefficient of the 

dispersed to the continuous phase for three different filler volumetric fractions 

for a spherical particle located at the centre of the repeatable cubical unit 

element. The variation of the relative effective permeability follows a 

sigmoid-shape variation with the ratio (Pd /Pc) with amplitude that increases 

rapidly with increasing filler volume fraction. When the permeability of the 

dispersed phase is smaller than the one in the continuous phase (when 

Pd /Pc < 1), filler particles act as a barrier material and the permeant diffusion 

streamlines will partly move away from the particles to preferentially diffuse 

through the polymeric continuous phase. For lower values of the relative 
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permeability (Pd /Pc), the particles inhibit the permeation of penetrants across 

the membrane with Peff /Pc <1. 

Results of Figure 5 show that there is a steep increase in the relative 

effective permeability for a dispersed to continuous permeability ratio 

between 1 and 10 and then it increases more slowly to attain a maximum 

increase in the relative effective permeability of the membrane at a dispersed 

to continuous permeability ratio of approximately 100. For ratio (Pd /Pc) lower 

than one, the particles inhibit the permeation of penetrants across the 

membrane. In order to compare the prediction of the effective permeability 

between the Maxwell model and the finite difference model obtained in this 

study, the relative effective permeability of the membrane was estimated 

using the Maxwell equation [25]. The predictions of the Maxwell model for 

the three filler volume fractions are plotted on Figure 5. The comparison in 

the prediction of the effective permeability between the Maxwell model and 

finite difference solutions revealed that, at the lower particle volume fraction, 

the predictions are almost identical. However, for higher particle volume 

fractions and for (Pd/Pc) values higher than 10, the Maxwell model tends to 

under estimate the relative effective permeability. 

 

 

 
 

Fig. 5. Effect of the dispersed to the continuous permeability ratio (Pd/Pc) on the 

relative permeability (Peff/Pc) of the membrane for one spherical particle centrally 

located at the centre of a repeatable cubical element. 

 

 
Fig. 6 compares the calculated relative effective permeability of ideal 

MMMs containing spherical and cubical fillers for two different ratios of 

(Pd/Pc) as a function of the volumetric filler content. Results in this figure 

clearly show that the relative permeability increases exponentially with the 

filler volume fraction. In addition, for the same relative ratio of the dispersed 

to the continuous phase permeabilities, the relative effective permeability of 

the cubical and spherical particles are identical up to a particle volume 

fraction of approximately 0.4. 

 

3.4. Effect of the filler size 

 

The effect of the size of the filler particles on the effective permeability 

of ideal MMMs was investigated using a single cubical element and a 

homogenous dispersion of spherical particles within the polymeric matrix. 

Results for different sizes of a single spherical particle and of numerous 

dispersed smaller spherical particles are presented in Fig. 7. Results clearly 

show that it is not the size of the spherical particles that matters but rather the 

total dispersed phase volume fraction. However, by increasing the size of the 

particles, the probability of particle-particle interaction (e.g. agglomeration) 

increases in the case of homogeneous or random dispersion which resulted in 

an important increase on the effective permeability of the membrane 

especially at higher dispersed to continuous phase permeability ratios (Pd/Pc). 

This observed increase is due to the creation of highly permeable (low 

resistance) pathways inside the membrane along the network of agglomerated 

particles [26]. Results presented in Figure 7 are for non-interacting particles. 

The effective permeability of a mixed matrix membrane with a homogenously 

dispersed particle is independent of the particle size and is identical to the 

permeability of its repeatable element. However, potential non-ideality such 

as interface void, rigidification and pore blockage may in practice affect the 

effective permeability of mixed matrix membranes. It would be possible to 

investigate the effect of non-idealities provided they can be quantified. 

Nevertheless, in this study the effect of non-ideality was not considered as it 

can be neglected in many cases [13,27,28]. 

 

 

 
Fig. 6. Effect of the dispersed to continuous permeability ratio on the relative 

permeability of the homogenously-dispersed mixed matrix membrane for cubical 

and spherical particles. 

 

 

 

 
 

Fig. 7. Effect of the filler size on the relative permeability of mixed matrix membranes. 
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3.5. Effect of the filler shape 

 

The shape of the filler particle is another parameter which could affect 

the permeation properties of MMMs. For each geometrical shape and 

orientation, there exists a maximum filler volume fraction. To investigate the 

influence of the particle shape on the effective permeability of an ideal mixed 

matrix membrane with homogenous dispersion of particles, different 

geometric shapes such as cubical, spherical and cylindrical filler particles 

were used. Moreover, two different orientations of the cylindrical fillers 

(horizontal and vertical) were studied while it was assumed that the diffusion 

and solubility coefficients were identical in all directions. In the numerical 

solution by finite differences, the repeatable element consisted of a particle of 

the desired geometry that was centrally located in a cubical polymeric matrix 

surrounding the particle. 

A series of simulations were performed for each particle shape over a 

wide range of filler volume fraction with a constant dispersed to continuous 

phase permeability ratio of 500 (Case 1 in Table 1). The calculated effective 

permeability obtained numerically for the different geometrical shapes and 

filler volume fractions is presented in Figure 8. Simulation results show that 

the effect of particle shape and orientation is not significant until a volumetric 

filler content reaches approximately 0.4. Beyond this volumetric filler 

content, the difference in the effective permeability for various particle shapes 

becomes more important. It appears that the cubical and horizontal cylindrical 

particles have very similar effective permeability over a wide range of 

volumetric filler content. Spherical particles are limited to smaller maximum 

dispersed phase volume fraction and have slightly higher effective 

permeability values than the cubical and horizontal cylindrical particles. 

Moreover, the relative effective permeability for the vertical cylinder is 

significantly greater than the relative effective permeability of the horizontal 

cylinder. A large-size vertical cylinder provides a large surface area, the two 

edges of the cylinder, that are close to the surfaces of the membrane and a 

small diffusional pathway within the polymeric membrane exists before the 

permeant can access the highly permeable dispersed phase. As a result, a 

large permeation flux occurs through the vertical cylinder and the overall 

permeation flux over the area of the membrane is significantly greater. For 

this reason, some researchers have used carbon nanotubes as fillers in mixed 

matrix membranes and have attempted to vertically align the embedded 

carbon nanotubes [29]. 

 

 

 
Fig. 8. Effect of the particle shape on the relative effective permeability of mixed 

matrix membranes with a constant dispersed to continuous phase permeability ratio 

(Pd/Pc) of 500 (Case 1 in Table 1). 

 

 
3.6. Effect of the membrane thickness and mesh independency 

 

A series of numerical simulations were performed to validate the 

hypothesis that the permeability of a repeatable unit element has an identical 

permeability of the entire membrane. Mixed matrix membranes of different 

thicknesses were simulated for a constant filler volume fraction of  = 0.17 

with a cubical filler particle located at the centre of a cubical repeatable unit 

element. In all simulations, a constant dispersed to continuous phase 

permeability ratio (Pd/Pc) of 500 (Case 1 in Table 1). Results obtained 

confirmed that, as predicted by Eq. (6), the effective permeability remained 

constant regardless of the thickness of the membrane. A thicker membrane for 

an identical concentration driving force leads to an equal decrease in the 

permeation flux such that the product JL in Eq. (6) remains unchanged. An 

additional series of experiments were performed where a number of 

repeatable unit elements were stacked one on top of the other to form a thick 

membrane. As expected, the effective permeability of the stack of repeatable 

unit elements had an identical effective permeability to a single repeatable 

unit element. These results imply that it is possible and desirable solving the 

Fick’s second law of diffusion for a section of the mixed matrix membrane 

provided that it is representative of all the other sections of the membrane. 

Most simulations by finite differences performed in this investigation 

were performed with 41 mesh points to discretize each of the three 

dimensions of a repeatable cubical unit element. To confirm that this number 

of mesh points was sufficient to accurately calculate the effective 

permeability of mixed matrix membranes, the same problem was solved with 

three different numbers of mesh points. Fig. 9 presents the variation of the 

relative effective permeability of the mixed matrix membrane as a function of 

the volumetric filler content for three different numbers of mesh points. It is 

obvious that the discretization scheme used in this investigation is sufficient 

and can predict the effective membrane permeability accurately. 

 

 

 
Fig. 9. Effect of the discretization size or number of mesh points on the relative 

effective permeability of mixed matrix membranes. 

 

 
3.7. Effect of the sorption isotherm  

 

The solubility coefficient (or partition coefficient) is a representative 

parameter to relate the equilibrium concentration of a permeant at the surface 

of a polymer or a particle to its equivalent concentration in the bulk solution 

in contact with the membrane. So far, the proposed models for the prediction 

of effective permeability of MMMs has been developed based on the 

assumption of a linear sorption isotherm (Henry’s law) of the permeant in 

both polymer and particle materials. This assumption is often valid for dense 

polymeric membranes as reported in various investigations [30]. However, 

the large majority of filler materials are adsorbent particles and they do not 

follow a Henry’s law isotherm except for very low concentrations. Over a 

wider range of concentration, the adsorbent particles will follow a nonlinear 

isotherm where the equilibrium bulk concentration is no longer a linear 

function of the liquid bulk concentration or partial pressure in the case of a 

gas. As a result, for a nonlinear isotherm, the solubility coefficient of each 
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mesh point in the solution domain will have a different value. 

To investigate the effect of nonlinearity for species sorption in the filler 

material, Langmuir isotherm (Eq. (7)) was used in the numerical solution as 

the sorption mechanism of species in the filler material. Consequently, an 

apparent solubility coefficient Si,j,k associated to each mesh point 

corresponding to a particle was calculated using Eq. (8). The concentration 

profile was then calculated iteratively while the solubility coefficient of each 

node within a filler particle was also changing with the changing 

concentration until reaching steady-state. 

 

1

mq bC
q

bC
=

+
 (7) 

 =  = 
1+

mq bq
S

C bC  
(8) 

 

In Eqs. (7) and (8), b is the microvoid affinity constant and represents the 

ratio of sorption and desorption rate constants of the penetrant through the 

free space and qm is the Langmuir maximum sorption capacity of component 

in the dispersed filler. Parameter b is a constant related to the energy of 

adsorption and indicates the adsorption nature to be either unfavourable (low 

b values) or favourable (high b values). 

With the presence of filler particles characterized with a nonlinear 

isotherm, the solubility coefficient becomes a function of the concentration. A 

series of simulations as a function of the feed solution concentration were 

performed to calculate the relative effective permeability of a mixed matrix 

membrane with homogenously dispersed spherical particles for three different 

values of the Langmuir constant b for a fixed value of qm of 10 (g/L). Results 

for a filler volume fraction of 0.12 and a diffusion coefficient of 110-10 (m2/s) 

for the dispersed phase, are presented in Figure 10. The relative effective 

permeability of the mixed matrix membrane decreases when the isotherm 

changes from a favorable to a less favorable Langmuir isotherm. Figure 10 

also shows the decrease in the relative effective permeability with an increase 

in the permeant feed concentration. As the feed concentration increases, the 

average solubility, as expressed by the right hand side of Eq. (8), will 

decrease and as a result, a decrease in the permeability of the filler material is 

observed. A decrease in the permeability of the filler material leads to a 

decrease in the effective permeability of the membrane. 

 

 

 
 

Fig. 10. Effect of the sorption isotherm on the relative effective permeability of 

mixed matrix membranes as a function of the permeant feed concentration and for 

three different values of the Langmuir constant b with qm = 10 (g/L). 

 

 
The average solubility of MMMs was calculated numerically based on 

the actual isotherm of the filler particle. In another work, Hashemifard et al. 

introduced an analytical solution based on the Langmuir sorption isotherm, 

the Darken equation and the Fick’s second law of diffusion to estimate the 

average solubility coefficient of the penetrants in particles within the MMMs 

(Eq. (9)) [31]. 

 

( )ln 1mq
S bC

C
= + +  (9) 

 

The model proposed by Hashemifard et al. represents an average 

solubility coefficient of species in the particles within the MMMs. The 

average solubility determined numerically for the entire membrane was 

compared with the prediction of Hashemifard et al. Results of this comparison 

are presented in Fig. 11. The predictions of Hashemifard et al. model tend to 

overestimate the average solubility across the membrane. The difference 

between the average solubility coefficient calculated with two methods 

increases with the increasing value of Langmuir constant b. 

 

 

 
 

Fig. 11. Comparison of the average solubility of the filler particle as a function of 

the permeant feed concentration for three values of the Langmuir constant b with qm 

= 10 (g/L). 

 

 

Figure 12 presents the effect of the average solubility on the relative 

effective permeability of MMMs for three different values of the Langmuir 

constant b. Results were obtained for a maximum sorption capacity (qm=10 

(g/L)), a filler volume fraction of 0.12 and for a spherical particle located at 

the centre of a cubical unit element. Results show that the highest relative 

effective permeability is obtained, as expected, for the highest average 

solubility which is obtained with very favorable isotherm (high values of b). 

Since the relative effective permeability falls on the same curve for all three 

values of b, it is really the effect of the average solubility that dictates the 

effective permeability for a constant diffusion coefficient. 

Another parameter in the Langmuir isotherm is the maximum adsorption 

capacity qm. To investigate the influence of the maximum particle sorption 

capacity on the effective permeability of the membrane, two different values 

of the maximum sorption capacity (qm) for a Langmuir constant b=0.2 (L/g) 

was considered under the identical particle volume fraction of the spherical 

filler ( = 0.12). Results of Fig. 13 indicate that the relative effective 

permeability of mixed matrix membranes increases with an increase in the 

maximum sorption capacity of the filler for a given penetrant. This increase 

was expected since the average solubility coefficient of the mixed matrix 

membrane is directly proportional to the value of the maximum sorption 

capacity, according to Eq. (8). Results clearly show that increasing the value 

of b results in an increase in the effective permeability of the membrane for 

less favorable isotherms. On the other hand, for very favorable isotherms 

(larger values of b), the effective permeability becomes independent of b and 

the difference in the effective permeability for the two drastically different 

values of maximum adsorption capacity qm is very small. This difference 

would be higher for a higher filler volume fraction. It is therefore desirable to 

have a filler particle having an isotherm that is favorable with an acceptable 

adsorption capacity. 

 

 

164 



H. Azimi et al. / Journal of Membrane Science and Research 4 (2018) 158-166 

 
 

Fig. 12. Effect of the average solubility and Langmuir constant b on the relative 

effective permeability of mixed matrix membranes for a filler particle having a 

Langmuir isotherm (qm = 10 (g/L)). 

 

 

 
 

Fig. 13. Relative effective permeability as a function of the Langmuir constant b 

and the maximum sorption capacity qm of mixed matrix membranes. 

 

 
4. Conclusions 

 

In this study, a 3D finite difference method was used to model the mass 

transport of a permeant through ideal mixed matrix membranes comprised of 

a dispersion of filler particles embedded in the matrix of a continuous phase. 

The numerical solution was used to investigate the influence of the filler 

properties (filler volume fraction, size, shape, orientation, and sorption 

isotherm), the permeability ratio of the dispersed to the continuous phase, 

and membrane thickness. Results showed that the effective permeability of 

mixed matrix membranes is a strong function of the particle volume fraction 

and the ratio of the dispersed phase permeability to the continuous phase 

permeability. In addition, results revealed that the filler size has no effect on 

the relative permeability of a homogenous dispersion of particles in the 

matrix of the membrane. It was shown that the effective permeability of a 

repeatable cubical unit element could be used to estimate the effective 

permeability of a mixed matrix membrane with homogenous dispersion of 

the filler material. The shape of the filler particles such as cubical, spherical 

and cylindrical particles had a negligible effect on the relative effective 

permeability of the membrane when the particle volume fraction in the 

matrix of the membrane was less than 0.4. Results also showed that the 

relative effective permeability of MMMs was higher for cylindrical particles 

with a vertical orientation compared to horizontal cylinders under identical 

conditions. Finally, numerical simulations revealed that the effective 

permeability of mixed matrix membranes is favoured with filler particles 

having a favorable isotherm (high b values) whereas the maximum 

adsorption capacity qm leads to a large increase in the effective permeability 

for small values of b but a relatively small increase for higher values of b. 

 

 

5. Nomenclature 

 

b Microvoid affinity constant (L/g) 

C Concentration (g/L) 

D Diffusion coefficient (m2/s) 

i, j, k Position of a discretization node 

J Permeate flux (g/m2h) 

L Thickness of the membrane or repeatable unit element (m) 

N Number of nodes in one Cartesian coordinate (-) 

P Permeability (m2/h) 

q Amount adsorbed (g/L) 

qm Langmuir maximum sorption capacity (g/L) 

R Particle radius (m) 

S Solubility coefficient ((g/L)/(g/L)) 

t Time (s) 

x, y, z Direction of Cartesian coordinates 

Δt Time step (s) 

 Volume fraction of the filler (-) 

τ Dimensionless time (-) 

Subscripts 

avg Average 

c Continuous  

d Dispersed 

eff Effective 

f Feed solution in contact with membrane 

x, y, z Direction of Cartesian coordinates 

i, j, k Position of a discretization node 

Superscripts 

L 

m 

R 

t 

Left 

Type of component 

Right 

Time 

 

 

6. Abbreviations 

 

AC Activated carbon 

CMS Carbon molecular sieves 

CNTs Carbon nanotubes 

FD Finite differences 

MMM Mixed matrix membrane 

MOFs Metal organics frameworks 

RB Resistance-based 
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